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An algorithm is presented for evaluating matrix elements and Clebsch-Gordan coefficients 
of simple Lie algebras. The method is based upon simple properties of Lie algebras and 
representation theory and it is applicable to any classical or exceptional Lie algebra. 

1. INTR~DLJ~TI~N 

Advances in the gauge theory of weak, electromagnetic and strong interactions 
have introduced high rank compact simple or semi-simple Lie groups into the Grand 
Unified theories [l-6]. Although the general properties of these groups are well 
understood, there is always a considerable computational problem in constructing 
explicit matrix realizations of irreducible representations (IRS) and evaluating 
Clebsch-Gordan coefficients (CGCs). 

In this paper we shall develop a general analytic method for obtaining matrix 
elements of IRS and CGCs of simple Lie groups. The method is based upon simple 
properties of Lie algebras and representation theory, such as roots and weights, and it 
can be implemented by a computer program. 

To demonstrate the practicability of the method, we shall analyze, in full, an 
example of a rank two Lie algebra. The generalization to higher rank Lie algebras 
will be discussed in the last section. 

2. BASIC CONCEPTS 

A general element of the Cartan subalgebra Z of 9 will be denoted by h, CL 
denotes a root and e, is the corresponding basis element of 9 such that 

[k e,] = a@) e,. (‘1 
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It is possible to associate with each root a a unique element h, of Z by the 
definition 

w, 2 m = a(h) (2) 

for all h E ;F” where B is the Killing form of 9 [ 71. The elements h, give rise to the 
Weyl canonical base with the usual commutation relations 181. 

For each pair of roots a and -a, there is a three-dimensional simple subalgebra of 
P [ 8 ] which can be constructed in the following way. Define H,(g) by 

H, = (2/(a, a>} A,, (3) 

where (a, a) is defined by the Killing form of P’, as (a, a) = B(h,, h,) = a(h,). Let 
E,, E-a, be elements of the root subspaces [S] -;“, and Y-,, such that 

B(E,, E-J = 2/(a, a>. (4) 

Then, for the pair (a, -a) the subalgebra is generated by the following commutation 
relations: 

lH,,E,I = 2E, 

(Ha,%,1 =-2E-, (5) 

(E,,E_,] =H,. 

As B(e,, e-, ) = -1 the basis elements e,, e_, of It’ can be expressed in terms of E, 
and E_, as follows: 

E, = { 2/(a, a)} “2 e, 

E -a = -(2/(a, a)}“* em.,. 
(6) 

With the identification J, = fH,, J, = E, and J- = E-, the operators J,, J, . JP 
are the familiar angular momentum operators. Consequently, the above defined H,, 
E,, E-a basis has the advantage of carrying the properties of the angular momentum 
algebra to any Lie algebra 9. 

In the SU(2) theory we know that every representation O(j) is specified by the 
eigenvalue j (j = 0, f, 1, :,...), and each state of a multiplet is characterized by the 
eigenvalue m, taking integral or half-integral values in the range -j < m < +j, 
ie 2j + 1 values in all. Moreover, each state of the multiplet is obtained from the state 
wj,,, by the application of the raising and lowering operators which, with the phase 
convention of Condon and Shortley [9], are given by 

It is then always possible to classify the basis functions of an IR of an arbitrary 
Lie algebra _io according to its A,-multiplets, and, using Eq. (7), to construct an 
explicit matrix realization of the IR. 
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The elements h, of X may be represented by diagonal Hermitian matrices, while 
for each pair a and -a of roots the matrices e, and e-, may be chosen so that 

e -a = - 4 (8) 

and correspondingly 

E -a =E;. (9) 

A matrix representation of a semi-simple Lie algebra can be completely specified if 
we know the matrices representing the elements of the Cartan subalgebra Fa, and the 
matrices representing the elements E,, E-, of Ya, SF<, respectively, for every simple 
root a. Then, from the commutation relations 

all the other matrices can be constructed. 

3. EXPLICIT MATRIX REALIZATION OF AN IR OF A SIMPLE LIE ALGEBRA 

If an IR r of a simple Lie algebra Y’ has weight multiplicity not exceeding one, 
then the action of the raising and lowering operators on the basis functions of r will 
trivially generate the matrix elements of this representation. However, if the weight 
multiplicity is greater than one, considerable complications arise due to the fact that 
more than one basis function corresponds to the same weight. 

There is a straightforward method for the construction of diagonal matrices 
representing H,, when the weight system is known. 

We can define the weights 1 of an IR as the eigenvalues of an operator W(h), 
h E X, on the basis functions v/, , v/z ,..., wI, where 1 is the rank of the algebra. This 
implies that the diagonal matrices are given by 

r(h)jj = A,j(h), h E YF, j = 1, 2 ,..., 1. 

In the basis defined by Eqs. (5), we have 

(r(Ha>)jj = kj(H,) = 12/(a3 a> I lj(ha)* 

Defining the linear functional Aj : X+ G [ 81 by 

lj(h,) = (nj, a) 

Eq. (12) becomes 

(11) 

(12) 

(13) 

(r(ff,))jj = Aj(ff,) = 2(kj, a>/& a>. (14) 

To determine the T(E,), a simple observation considerably simplifies the calculations. 
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Equation (1) can be written 

PW, WJI = a(h) WJ. 

In particular, the pq element is 

(15) 

WG,, - W$, - 44JW,N,, = 0. (16) 

Equation (16) tells us that (r(e,)),, # 0 only if 

w,, -m,, = a(h) (17) 

i.e., (Qe,)),, # 0 if the difference between the pth weight and the qth weight is a(h). 
Now let us suppose that we have constructed the matrices representing the 

generators H,, a simple root, using Eq. (16). Then we can partition these diagonal 
matrices into blocks according to their A,-subalgebra content. If all the weights are 
simple, then there is a unique block form for each A,-subalgebra. If some of the 
weights have multiplicity greater than one, there is an ambiguity in deciding which 
element of the T(H,) belongs to each A,-subalgebra IR. In the following example we 
shall show how one can remove this ambiguity. 

The 27.dimensional representation of G, has some of its weights with multiplicity 
greater than one. In Fig. la we have enumerated the weights according to their 
lexicographical order. The vertical lines join pairs of eigenvectors vA and WA, such 
that (wn, E-,,w~) # 0, while the horizontal lines join pairs v/1, w.; of eigenvectors 
such that (vn, Ep,, v/i) # 0. With the following values of the normalization of the 
quantities (ai, a,), i’= 1, 2. 

4 

3 

2- 

1 

O- 

-l- 

-2. 25 

-3. 26 

-L 17 

-2 -1 0 1 2 

(aI,a,>=f, (a2 f ad = -ik (18) 

FIG. 1. The weight diagrams of (a) 27.dimensional representation, (b) 14.dimensional represen- 
tation, (c) 7-dimensional representation. The circles represent weight multiplicities. 

581/S3/1-3 
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and the use of the relation J, = qH, , Eq. (14) gives for the 27 representation 

r”(H,,) = f diag(O, 4, 1, - i,O, 0, f, 4, 1, -1 

-l,-f,-~,O,o,O,t,f,-l,-l,-4,0,0,~,-l,-4,O) 

r”(H,J = a diag(1, 0, -1, $, $, 4, - i, - 4, - i, 2 (19) 

1, l,O, o,o, -1, -1, -2, i, t, 4, - ;, - f, - 3, l,O, -1). 

Using Eq. (17), the matrix T2’(He,), for example, can be written in an A ,-block form 
(we omit the constant factor a). 

r2’(HaJ = diag(1, 0, -1; 

A ,-triplet 

z y :$, --y, -); 

A ,-tetraplet 
A ,-doublet 

2, 1, 1, 0, 0, 0, -1, -1, 2; 
\ v y -w 

(20) 

A ,-pentaplet 
A ,-triplet 
A ,-singlet 

3, f, f, -I -1 - 3; 1, 0, -1). 
\ v ,;ti*’ / \.+/ 

A ,-tetraplet A ,-triplet 
A ,-doublet 

The lines in the above expression indicate the ambiguity of assigning the eigenvalues 
to a particular multiplet according to Eq. (17). This ambiguity will also be reflected 
in the matrix r(EJ. In Fig. 2 we have represented the matrix r(EaJ with its various 
A ,-blocks. 

A,-tr~pkt 
A$etraplet 

Aidoublet 
ATpentaplet 

ATtriplet 

Ayglet 
Aitetra@et 

P;dwbkt 
A<tnplet 

/ 

FIG. 2. The matrix r2’(E,,) in its A, - subalgebra block form. 
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If we go through the same computational procedure for the other generator H,, , 
we shall end up with a matrix T(E,,) of a similar form as in Fig. 2 (with a different 
arrangement of the Al-blocks). To remove the ambiguities present in these two 
matrices, we choose one direction in the weight space, let us say the q-direction, in 
which we fix the multiplets by an arbitrary choice of the states. This choice will fix 
unambiguously the matrix r(E,J. The matrix elements in the a,-direction can then 
be computed using the commutation relations of the algebra. In this particular 
example we have chosen the states ws, v/, (see Fig. la) to belong to the tetraplet (vq, 
v5, v,, v,) while the states v6, v/s are chosen such as to form a a,-doublet (w,, wB); 
the states ‘YlO? VII? v//13, v16? vls form a pentaplet; the states w,*, v,~, v,, form a 
triplet; the state vuls is a singlet; the states wig, vzo, v/22, vX/24 form a tetraplet, and 
finally the states wzl, wz3 form a doublet. 

As E,, ~1~ and E,, ws are both proportional to w.l (Fig. la) let 

The matrices can be chosen to be real, so that relation (9) can be written 

W,) = F(E-,). 

Because of relation (21) the following results would be valid: 

G5,,)35 = a, T(Ect, )j5 = 0 jf3 

W,J36 = by ‘(E,, )j6 = 0 j# 3. 

There would be complex numbers 1 and fl such that 

This implies that 

r(E-,J,, =P, '(E-al)j3 = 0 j#5,6 

G-a,)63 = 1. 

Thus, relations (22), (23) and (25) give 

a =Y, b =A. 

Hence, relation (24) becomes 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 
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The action of Em2 on relation (27), as [E-,,, Ea2] = 0, will give 

EJL, w3 = aEm ws + bEa ws 

= flay4 (from our choice in the a,-direction and Eq. (7)) 

E-a,Ecg3 =G&‘%) 

=+Y4 (because E _ a, y2 = ty4 from Eq. (7)). 

Thus 

a=&. (28) 

TABLE I 

Matrix Elements of the 27, 14 and 7 Representations of G, (Only the Non-zero Values c of the (i,j) 
Coordinates Are Given, in an Array (i,j. 0)) 

27 Representation 

We, 1 

14 Representation 7 Representation 

24 1 

3 5 da& 
5 10 \/2/&i 

3 6 2ld3 
6 10 w5 
711 \/z/ 3 
7 12 5 11 3 
8 11 ll& 
8 12 -fi/fi 
9 13 II& 

13 19 I/& 
9 14 lifi 

14 19 I/& 
9 15 fi/fi 

15 19 \/8/v? 

1620 fi/& 

16 21 vJ3 
1720 M 
17 21 -fi/fi 

18 22 fi/@ 

22 25 fi/fi 

1823 2lv5 
23 25 2lJ3 
24 26 1 

W,,) W, , ) W,:) W, 1) W”?) 

12Jz 12 1 2 3J3 231 12 1 

2 3Jz 46 1 34 2 561 341/\/1 

4 SJS 5 7&fi 4 5\/X 45 I/& 

57 2 7 10 fi/& 6 7$ 67 I 

68 1 5 8 l/G 7 9fi 

7 9fi 8 10 I/$ IO 114 
1011 2 911 1 1112 2 

11 13q% 1314 1 12 13 \/3 

12 14 Jz 
13 16& 

14 17 Jz 

16 19 2 

19206 

20 22 2 

2123 1 

22 24 & 

25 26 1 
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From [E,,, E-,,I = H,, we have when applied to VIA, 

EqE-a, w3 -L,E,,v, =H aI w3 

-k,(ws + by/,) = 2 
(2a, + 2a2, a,> 

(a,, a,> v/3 

((g+bZ)y/,= 
i 
2 2(a13aJ) +2 ;p;;‘, l/y3 

(aIT a,> L, 1 

(a’ + b2) w3 = (4 + 2(-l)) v3 

a2 + b2 = 2 

(from the Cartan matrix of G, we 
have A,, = 2, A,, = -1) 

and from Eq. (28), we get b = 2/&. 
The above calculations fix the matrix elements around the (2, 3, $4) loop. All the 

other loops of the weight diagram of Fig. la can be calculated in the same way. This 
results in a matrix representation of E,,. 

Table I gives the non-zero matrix elements of the generators T(E,[) and T(E,,) of 
the 27-dimensional representation of G, . We shall discuss later the generalization of 
the above computational procedure for large 1. 

4. A PROCEDURE FOR GENERATING CGCs 

An important by-product of the method developed in Section 3 is a procedure for 
evaluating CGCs. To establish our notation, we shall denote the basis functions of 
two IRS of a simple compact Lie group by w:’ and &“, where a and b stand for the 
dimensions of the IRS and p, P for their weights in lexicographical order. Then. the 
CGCs will be given by [lo] 

where the index y distinguishes those IRS which appear in a Clebsch-Gordan Series 
(CGS) more than once. We can also express the product basis functions as linear 
combinations of the basis functions of the IRS, i.e., 

(30) 

The knowledge of the matrix elements and the use of the raising and lowering 
operators is sufficient to determine the CGCs of a given CGS. An example will 
elucidate our discussion. 
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Let us suppose we want to evaluate the CGCs of the CGS 

7@7=27@14@7@1 (31) 

of G,. Using the methods of Section 3 we construct first a matrix realization of the 
IRS appearing in relation (31). The results of the computation are in Table I. 

We shall denote the basis functions of the representations in relation (31) by w!,,, 
(i = 1, 2 ,..., 7) I/$,, (j = 1, 2 ,..., 7), I,/$, (k = 1, 2 ,..., 27), w,!,; (I = 1, 2 ,..., 14), i//A,, 
(m = 1, L, 7) and w:,(~,~,. The Greek indices indicate the weight systems, while the 
Latin indices i, j, k, 1, m specify the position of a state in the weight diagrams 
(Fig. 1). In terms of the basis functions relation (31) can be written 

To calculate the CGCs (l,L 1 ilV jlJ, we start with the highest weight of the 27 
representation. In terms of the basis functions of the 7’s we have 

w  
27 
1,(2,4) = 1 * w:,c,,z, 0 v/::(1,2)’ (33) 

The successive application of the lowering and raising operators on the states of 
(33) will result in a complete determination of the (i,L ( ilu jl;) coefficients. 

Applying this method, we must be careful when we encounter a state with 
multiplicity greater than one. In Fig. 3 we have isolated the first state with internal 
multiplicity two of the 27 representation. The application of E-,, to the state v/::(~,~, 
gives 

The result of applying EmU2 to w~~~2,3j is 

dy(2.2) = v&l,,, 0 4(1.1,. 

Y 
27 

lU2.4 

(34) 

(35) 

FIG. 3. The first state with multiplicity two of the 27 representation. 
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Then, the left-hand side of Eq. (34) becomes 

Because we have chosen the state 5 to belong to an E,*-triplet (see Section 3) 
when Epaz is applied to the basis function ~~~~3,1, we find 

If we substitute relations (37) and (36) into (34) we get a relation from which the 
state I&,,~, is determined in terms of its 7 and 7’ components. The result is 

W&.2, = 
(38) 

To evaluate the CGCs (,ii ( ilv j:L), we start again with the highest weight of the 14 
representation (2, 3). However, there is another state with the same weight, belonging 
to the 27 representation, given by 

21 
Y - 2.C2.3) = &I,,) 0 k&,2, + d,Cl.Z, @ d:cw 1. 

To define the state ~:f~~,~) we choose the orthogonal combination to the above 
state 

and we repeat exactly the same procedure. With this method all the CGCs of relation 
(32) can be easily calculated. 

The results of the full calculation are shown in Table II. 

5. GENERALIZATIONS 

As we go to higher rank algebras and representations the weight system becomes 
more complicated and the difficulty of the method is to solve the labeling problem of 
the states which appear in the various loops. Towards this direction we have 
developed a computer program [ 111 for the physically interesting SO(4n + 2) groups 
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TABLE I1 

CGCsoftheCGS7@7=27@14@7@lofG, 

a. 27 Representation 

State 7,7 States CGCs State I,7 States CGCs State 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 1 

1 2 

2 1 

22 

1 3 

3 1 

14 

23 

32 

4 1 

14 

23 

32 

4 I 

1 5 

24 

42 

5 1 

1 5 

24 

42 

5 1 

25 

52 

3 3 

34 

43 

1 6 

6 1 

13 

14 

15 

16 

17 

18 

19 

20 

21 

3 5 

44 

5 3 

1 7 

26 

62 

7 1 

I 7 

26 

3 5 

44 

5 3 

62 

7 I 

45 

54 

27 

72 

5 5 

36 

6 3 

3 7 

46 

64 

73 

3 7 

46 

64 

7 3 

I&% 22 

vw~ 

‘I& 

112 
112 23 

'I2 
112 

-l/3 

‘I3 24 

7116 

-7116 25 

7116 26 

113 
-l/3 27 

‘IJZ 

IId 
'I\/2 
'I\/2 

7.7 States CGCs 

47 ‘IJ3 

56 ‘/A 

65 ‘Ifi 

7 4 lidj 
47 -l/A 

5 6 ‘ifi 

65 w3 
74 -l/\/6 

5 7 ‘Ifi 
7 5 l/q’3 

66 1 

67 vJ2 
16 ‘Idi 
7 1 I 

Table continued 
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TABLE II (continued) 

b. 14 Representation 

State 7,7 States CGCs State 7,l States CGCs State 

1 2 

2 1 

1 3 

3 I 

I 4 

2 3 

32 

4 1 

I 5 

24 

42 

5 I 

25 

5 2 

I 6 

34 

43 

6 I 

I 7 

26 

3 5 

5 3 

62 

7 1 

1 7 

26 

62 

7 1 

2 7 

45 

54 

72 

10 

II 

12 

13 

14 

7,7 States CGCs 

36 --li’fi 

6 3 Ii”5 

3 7 -I/& 

46 -l&f3 

64 l/J3 

7 3 l/J6 
47 -1 j ‘rj 

.V 
5 6 --l/\/6 

65 l/Ji 

74 I&h 

5 7 -1;JZ 

7 5 l/J2 
6 7 -l/\/>- 

76 1/J2 

c. 7 Representation 

State I,7 States CGCs State 7,7 States CGCs State 7.7 States CGCs 

1 1 4 -IId 43 

23 uJ3 6 1 

32 -l/J3 4 1 7 

4 1 l/G 27 

2 1 5 -l/J3 3 5 

24 I/& 5 3 

42 -l/J& 62 

5 1 l/fi 7 1 

3 I 6 -l/J3 5 2 7 

34 l/fi 45 

5 4 -l/\/6 

7 2 I/J3 

3 7 --l.‘J3 

46 I i V/6 
6 4 ~ I/“‘6 

73 I/.“? 

47 -l/“ft? 

5 6 i/v’j 

65 -I,j,i _ ‘3 

74 I/‘\/6 

d. I Representation 

State 

I 

7.7 States CGCs 

1 7 -l/2 

2 6 l/2 

62 -112 

7 1 I/? 
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FIG. 4. A diagramatic representation of a Lie algebra. 

[3, 51. The program implements general algorithm for constructing matrix elements of 
IR of any semi-simple Lie algebra L of rank 1 consisting of the following steps: 

(a) An arbitrary choice of the multiplets in the a,-direction. 

(b) For each of the other a,-multiplets (i = I - 1, I - 2,..., 2, 1) we consider all 
the loops (ai, aj) with i > j and i,j = 1, I- 1, . . . . 2, 1. 

(c) If the loop (ai, aj) cannot specify the states of the aj-multiplet, we make a 
choice of the states belonging to the ai-multiplet. 

Once the matrix elements have been evaluated using the above algorithm the program 
proceeds to the evaluation of the CGCs of a particular CGS. In an application of this 
program to the SO(10) theory the matrix elements of the 126, 120, 16 and 10 IRS 
have been evaluated and the CGS of the CGS 16 @ 16 = 126 @ 120 0 10 have been 
calculated [ 111. 

In the CGCs theory [ 121 there is a complication [ 13, 141 if an IR appears more 
than once in a CGS. Inthat case, the method of Section 4 is also applicable, the only 
difference being that the basis functions corresponding to the highest weight of the IR 
P,yi must be an orthogonal combination of the basis function corresponding to the 
highest weights of the representations Pqy’ with j < i. 

An implementation of the above method to other Lie algebras is needed and this 
requires a systematic study of the labeling problem. We believe that it can be done in 
a systematic way using a computer [ 111. This opens the possibility of developing a 
Lie algebra computer package program according to Fig. 4, where the only input 
would consist of the type and the rank of a particular Lie algebra. 
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